https://repositorio.ufjf.br/jspui/handle/ufjf/16788
File | Description | Size | Format | |
---|---|---|---|---|
deividedsondelarotacampos.pdf | 4.22 MB | Adobe PDF | View/Open |
Type: | Dissertação |
Title: | Modelagem da pressão de fundo de poço em sistemas de escoamento multifásico: uma abordagem utilizando programação genética |
Author: | Campos, Deivid Edson Delarota |
First Advisor: | Fonseca, Leonardo Goliatt da |
Co-Advisor: | Saporetti, Camila Martins |
Referee Member: | Bernardino, Heder Soares |
Referee Member: | Igreja, Iury Higor Aguiar da |
Referee Member: | Pereira Junior, Wanderlei Malaquias |
Resumo: | A modelagem da pressão de fundo de poço em sistemas de escoamento multifásico representa um desafio complexo na indústria de petróleo e gás, dado seu impacto direto na eficiência e segurança das operações de produção. Apesar da extensa literatura existente, a aplicação de técnicas de aprendizado de máquina para este propósito permanece sub explorada. Este estudo adotou uma abordagem utilizando a Programação Genética para determinar a pressão de fundo de poço. Utilizando 795 amostras de dados relacionados a testes de produtividade de poços em campos no Oriente Médio, abrangendo variáveis como fluxo de óleo, fluxo de gás, fluxo de água, densidade do óleo, profundidade de perfuração, temperatura do fundo do poço e pressão na cabeça do poço, a estratégia baseada em Programação Genética foi aplicado para desenvolver modelos simbólicos interpretáveis. Esses modelos demonstraram habilidade em descrever, de forma compreensível, a complexa relação entre variáveis operacionais, ambientais e a pressão de fundo de poço. A obtenção de modelos simbólicos compreensíveis destaca a aplicabilidade prática da pesquisa, proporcionando uma compreensão mais profunda dos fatores que influenciam a pressão de fundo de poço e facilitando uma tomada de decisão mais informada por parte dos profissionais da indústria. |
Abstract: | Wellbore pressure modeling in multiphase flow systems poses a significant challenge in the oil and gas industry due to its direct impact on production efficiency and safety. Despite extensive literature, the application of machine learning techniques for this purpose remains underexplored. This study employs a Genetic Programming (GP) approach to predict wellbore pressure. Utilizing 795 data samples from well productivity tests in Middle Eastern fields, encompassing variables such as oil flow rate, gas flow rate, water flow rate, oil density, drilling depth, wellbore temperature, and wellhead pressure, the SGP-based strategy was applied to develop interpretable symbolic models. These models demonstrated the ability to comprehensibly describe the complex relationship between operational and environmental variables and wellbore pressure. The derivation of interpretable symbolic models highlights the practical applicability of the research, providing a deeper understanding of the factors influencing wellbore pressure and facilitating more informed decision-making by industry professionals. |
Keywords: | Pressão de fundo de poço Programação genética Modelagem computaciona Escoamento multifásico Well bottom-hole pressure Symbolic genetic programming Computational modeling Multiphase flow |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Language: | por |
Country: | Brasil |
Publisher: | Universidade Federal de Juiz de Fora (UFJF) |
Institution Initials: | UFJF |
Department: | ICE – Instituto de Ciências Exatas |
Program: | Programa de Pós-graduação em Modelagem Computacional |
Access Type: | Acesso Aberto Attribution 3.0 Brazil |
Creative Commons License: | http://creativecommons.org/licenses/by/3.0/br/ |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/16788 |
Issue Date: | 7-May-2024 |
Appears in Collections: | Mestrado em Modelagem Computacional (Dissertações) |
This item is licensed under a Creative Commons License