Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/18126
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
yanbarbosawerneck.pdf107.33 MBAdobe PDFVisualizar/Abrir
Tipo: Dissertação
Título: Comparing classical ordinary differential equation and neural network models for reduced-order single-cell electrophysiology
Autor(es): Werneck, Yan Barbosa
Primeiro Orientador: Santos, Rodrigo Weber dos
Co-orientador: Rocha, Bernardo Martins
Membro da banca: Lobosco, Marcelo
Membro da banca: Cherry, Elizabeth Maura
Resumo: -
Abstract: Modeling cardiac electrophysiology plays a crucial role in advancing non-invasive diagnostics and enhancing our understanding of heart function. Historically, models describing excitable cells through systems of Ordinary Differential Equations (ODEs) have been the standard in electrophysiology modeling. These models range from detailed representations of ion channel dynamics to simplified reduced-order models that capture the behavior of excitability phenomenologically. In this work, we compare a fast reduced-order model with data-driven and physics-informed neural networks to assess their effectiveness as efficient replacements for numerical solutions. For this, the FitzHugh-Nagumo model was used, and scenarios with increasing complexity were studied. The networks were trained using numerical data and knowledge of model physics, derived from the ODEs. Additionally, several techniques were employed to improve training, including architecture optimization, increased point density in regions of high error, and time-domain splitting. Inference was conducted using the state-of-the-art TensorRT SDK to speed up model inference, leveraging tensor core matrix-matrix specialization to ensure maximum performance. We observed up to a 1.8x speedup compered to numerical models optimized and implemented in CUDA, with minimal loss in accuracy. These gains highlight valuable use cases for neural network emulators, as faster substitute for numerical methods when complexity can be controlled, while still emphasizing the prominence of equation-based modeling in cardiac electrophysiology in general due to their flexibility.
Palavras-chave: Redes neurais
EDO
Potencial de ação
PINNs
Modelos surrogados
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Modelagem Computacional
Tipo de Acesso: Acesso Aberto
Attribution 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/18126
Data do documento: 13-Nov-2024
Aparece nas coleções:Mestrado em Modelagem Computacional (Dissertações)



Este item está licenciado sob uma Licença Creative Commons Creative Commons