Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/2372
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
angelopereiradocarmo.pdf1.81 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Uma abordagem numérica para problemas de otimização no Ensino Médio
Autor(es): Carmo, Angelo Pereira do
Primeiro Orientador: Mazorche, Sandro Rodrigues
Membro da banca: Casagrande, Rogério
Membro da banca: Veloso, Marcelo Oliveira
Resumo: Este trabalho visa discutir métodos para se determinar pontos extremos de funções de uma variável real. Ele procura estender o número de problemas de otimização que conseguimos solucionar no ensino básico para além daqueles modelados por funções quadráticas. Para isso fazemos uso de "Métodos Numéricos". No capítulo 1 falamos sobre o cálculo de extremos de funções quadráticas. Tecemos alguns comentários sobre a forma com que se ensina essa parte da matemática no ensino médio e mostramos um procedimento interessante para encontrar extremos da função quadrática. Este procedimento baseia-se na observação de que a abscissa do ponto extremo não se altera ao se fazer um tipo de translação da parábola. No capítulo 2 enfatizamos resultados clássicos da teoria de otimização de funções reais. Estes resultados são normalmente abordados em cursos de cálculo e servem, tanto para garantir a existência de extremos de funções contínuas em intervalos fechados quanto para se determinar este valor. Os resultados são demonstrados do ponto de vista do Cálculo Diferencial e Integral de uma variável real. No capítulo 3 abordamos dois métodos numéricos simples que podem ser usados no ensino médio sem maiores problemas. A utilização destes métodos neste trabalho está fortemente relacionada com o fato das funções abordadas em problemas de otimização serem (em geral) contínuas e unimodais no intervalo onde o problema faz sentido. No capítulo 4 propomos três problemas sobre otimização onde as funções envolvidas não são quadráticas. Neste momento queremos mostrar a força dos métodos numéricos introduzidos no capítulo 3 na solução destes problemas. Em particular, optamos pelo "Método da Seção Áurea" para ser aplicado nestes problemas por acreditar que a assimilação deste método seja mais rápida por parte dos alunos do que o método da "Bisseção". Por m, acreditamos que a implementação do "Método da Seção Áurea" numa planilha eletrônica trás agilidade ao processo e motiva os alunos a aprenderem sobre este tipo de recurso computacional tão importante nos dias de hoje.
Abstract: This paper aims to discuss methods for determining extreme points of functions of a real variable. It seeks to extend the number of optimization problems we can solve in basic education beyond those modeled by quadratic functions. For this we make use of "Numerical Methods". In Chapter 1 we talked about the calculation of extreme quadratic functions. We comment about the way we teach this part of mathematics in high school and show an interesting procedure for calculating extremes of the quadratic function. This procedure is based on the observation that the abscissa of the extreme point is not changed by making a kind of translation of the parabola. In Chapter 2 we emphasize classical results of optimization theory of real functions. These results are normally covered in calculus courses and serve both to ensure that there are extremes of continuous functions in closed intervals and determine this value. The results are presented from the viewpoint of Di erential and Integral Calculus of a real variable. In chapter 3 we discuss two simple numerical methods that can be used in high school without major problems. The use of these methods in this work is strongly related to the fact that the functions discussed in optimization problems are (in general) continuous and unimodal in the range where the problem makes sense. In Chapter 4 we propose three optimization problems, in this case the functions involved are not quadratic. In this moment we want to show the strength of the numerical methods introduced in Chapter 3 in solving these problems. In particular, we chose the "Golden Section Method" to be applied in these problems believing that assimilation of this method is easier by students of high school than the "Method of Bisection". Finally, we believe that the implementation of the "Method of Golden Section" in a spreadsheet brings agility to the process and motivates students to learn about this kind of computational resource so important nowadays.
Palavras-chave: Matemática
Matemática aplicada
Otimização
Métodos numéricos
Mathematics
Applied Mathematics
Optimization
Numerical Methods
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Mestrado Profissional em Matemática (PROFMAT)
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/2372
Data do documento: 3-Mar-2013
Aparece nas coleções:Mestrado Profissional em Matemática em Rede Nacional - PROFMAT (Dissertações)



Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.