Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/4772
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
abraaoguimaraesflores.pdf5.66 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Difusão orientada por centralidade em redes complexas dinâmicas
Autor(es): Flores, Abraão Guimarães
Primeiro Orientador: Silva, Ana Paula Couto da
Co-orientador: Vieira, Alex Borges
Membro da banca: Ziviani, Artur
Membro da banca: Fonseca Neto, Raul
Resumo: A dinamicidade é uma característica presente em diversos sistemas reais, tais como redes de comunicação, sociais, biológicas e tecnológicas. Processos de difusão em redes complexas podem surgir, por exemplo, em busca de dados, roteamento de dados e propa gação de doenças. Desta forma, a compreensão do tempo necessário para difusão é um tema de estudo importante em redes complexas dinâmicas. Nesta dissertação é realizado um estudo de como medidas de centralidade podem ajudar na diminuição do tempo de difusão de informação em redes complexas dinâmicas. Usando dados de sistemas reais e sintéticos é mostrado que, se a dinamicidade é desconsiderada, o tempo necessário para difundir uma informação na rede é subestimado. Foram propostos algoritmos de difusão que consideram métricas de centralidade em grafos. Estes algoritmos aceleram o processo de difusão, quando comparados com algoritmos de difusão mais simples, como o Random Walk. Por fim, foi analisado o impacto de um modelo simples de predição de arestas nos algoritmos de difusão baseados em centralidade que foram propostos nesta dissertação.
Abstract: The dynamics is a characteristic present in many real systems, such as communication networks, social, biological and technological. Diffusion processes in complex networks may arise, for example, search data, routing data and the spread of diseases. Thus, understanding the time required for diffusion is an important topic of study in dynamic complex networks. This dissertation is a study of how centrality measures can help in reducing the time information dissemination in dynamic complex networks. Using data from synthetic and real systems is shown that if the dynamics is disregarded, the time needed for spreading an information network is underestimated. Diffusion algorithms have been proposed that consider metrics of centrality in graphs. Finally, we analyze the impact of a simple model for predicting edge algorithms in diffusion based on centrality that have been proposed in this dissertation.
Palavras-chave: Redes complexas
Dinâmica
Difusão
Tempo de cobertura
Complex Networks
Dynamics
Diffusion
Cover Time
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4772
Data do documento: 26-Ago-2013
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.