Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/4789
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
robertocarlossoaresnalonpereirasouza.pdf1.32 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Algoritmos online baseados em vetores suporte para regressão clássica e ortogonal
Autor(es): Souza, Roberto Carlos Soares Nalon Pereira
Primeiro Orientador: Fonseca Neto, Raul
Co-orientador: Leite, Saul de Castro
Co-orientador: Arbex, Wagner Antônio
Membro da banca: Borges, Carlos Cristiano Hasenclever
Membro da banca: Meira Junior, Wagner
Resumo: Neste trabalho apresenta-se uma nova formulação para regressão ortogonal. O problema é definido como a minimização do risco empírico em relação a uma função de perda com tubo desenvolvida para regressão ortogonal, chamada ρ-insensível. Um algoritmo para resolver esse problema é proposto, baseado na abordagem da descida do gradiente estocástica. Quando formulado em variáveis duais o método permite a introdução de funções kernel e flexibilidade do tubo. Até onde se sabe, este é o primeiro método que permite a introdução de kernels, através do chamado “kernel-trick”, para regressão ortogonal. Apresenta-se ainda um algoritmo para regressão clássica que usa a função de perda ε-insensível e segue também a abordagem da descida do gradiente. Para esse algo ritmo apresenta-se uma prova de convergência que garante um número finito de correções. Finalmente, introduz-se uma estratégia incremental que pode ser usada acoplada com ambos os algoritmos para obter soluções esparsas e também uma aproximação para o “tubo mínimo”que contém os dados. Experimentos numéricos são apresentados e os resultados comparados a outros métodos da literatura.
Abstract: In this work, we introduce a new formulation for orthogonal regression. The problem is defined as minimization of the empirical risk with respect to a tube loss function de veloped for orthogonal regression, named ρ-insensitive. The method is constructed via an stochastic gradient descent approach. The algorithm can be used in primal or in dual variables. The latter formulation allows the introduction of kernels and soft margins. To the best of our knowledge, this is the first method that allows the introduction of kernels via the so-called “kernel-trick” for orthogonal regression. Also, we present an algorithm to solve the classical regression problem using the ε-insensitive loss function. A conver gence proof that guarantees a finite number of updates is presented for this algorithm. In addition, an incremental strategy algorithm is introduced, which can be used to find sparse solutions and also an approximation to the “minimal tube” containing the data. Numerical experiments are shown and the results compared with other methods.
Palavras-chave: Regressão ortogonal
Métodos Kernel
Algoritmos online
Máquinas de vetores suporte
Orthogonal Regression
Kernel Methods
Online Algorithms
Support Vector Machines
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4789
Data do documento: 21-Fev-2013
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.