Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/4882
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
lucianowalentyxaviercejnog.pdf13.9 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Rigid registration based on local geometric dissimilarity
Autor(es): Cejnog, Luciano Walenty Xavier
Primeiro Orientador: Vieira, Marcelo Bernardes
Membro da banca: Silva, Rodrigo Luis de Souza da
Membro da banca: Giraldi, Gilson Antônio
Resumo: Este trabalho visa melhorar um método clássico para o problema de registro rígido, o ICP (iterative Closest Point), fazendo com que a busca dos pontos mais próximos, uma de suas fases principais, considere informações aproximadas da geometria local de cada ponto combinadas à distância Euclidiana originalmente usada. Para isso é necessária uma etapa de pré-processamento, na qual a geometria local é estimada em tensores de orientação de segunda ordem. É definido o CTSF, um fator de similaridade entre tensores. O ICP é alterado de modo a considerar uma combinação linear do CTSF com a distância Euclidiana para estabelecer correspondências entre duas nuvens de pontos, variando os pesos relativos entre os dois fatores. Isso proporciona uma capacidade maior de convergência para ângulos maiores em relação ao ICP original, tornando o método comparável aos que constituem o estado da arte da área. Para comprovar o ganho obtido, foram realizados testes exaustivos em malhas com características geométricas variadas, para diferentes níveis de ruído aditivo, outliers e em casos de sobreposição parcial, variando os parâmetros do método de estimativa dos tensores. Foi definida uma nova base com malhas sintéticas para os experimentos, bem como um protocolo estatístico de avaliação quantitativa. Nos resultados, a avaliação foi feita de modo a determinar bons valores de parâmetros para malhas com diferentes características, e de que modo os parâmetros afetam a qualidade do método em situações com ruído aditivo, outliers, e sobreposição parcial.
Abstract: This work aims to enhance a classic method for the rigid registration problem, the ICP (Iterative Closest Point), modifying one of its main steps, the closest point search, in order to consider approximated information of local geometry combined to the Euclidean distance, originally used. For this, a preprocessing stage is applied, in which the local geometry is estimated in second-order orientation tensors. We define the CTSF, a similarity factor between tensors. Our method uses a linear combination between this factor and the Euclidean distance, in order to establish correspondences, and a strategy of weight variation between both factors. This increases the convergence probability for higher angles with respect to the original ICP, making our method comparable to some of the state-of-art techniques. In order to comprove the enhancement, exhaustive tests were made in point clouds with different geometric features, with variable levels of additive noise and outliers and in partial overlapping situations, varying also the parameters of the tensor estimative method. A dataset of synthetic point clouds was defined for the experiments, as well as a statistic protocol for quantitative evaluation. The results were analyzed in order to highlight good parameter ranges for different point clouds, and how these parameters affect the behavior of the method in situations of additive noise, outliers and partial overlapping.
Palavras-chave: Registro rígido
Iterative closest point
Tensor de orientação
Dissimilaridade de forma
Rigid registration
Iterative Closest Point
Orientation Tensor
Shape Dissimilarity
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4882
Data do documento: 21-Set-2015
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.